Abstract:L\'evy walks and other theoretical models of optimal foraging have been successfully used to describe real-world scenarios, attracting attention in several fields such as economy, physics, ecology, and evolutionary biology. However, it remains unclear in most cases which strategies maximize foraging efficiency and whether such strategies can be learned by living organisms. To address these questions, we model foragers as reinforcement learning agents. We first prove theoretically that maximizing rewards in our reinforcement learning model is equivalent to optimizing foraging efficiency. We then show with numerical experiments that our agents learn foraging strategies which outperform the efficiency of known strategies such as L\'evy walks.
Abstract:Social insect colonies routinely face large vertebrate predators, against which they need to mount a collective defense. To do so, honeybees use an alarm pheromone that recruits nearby bees into mass stinging of the perceived threat. This alarm pheromone is carried directly on the stinger, hence its concentration builds up during the course of the attack. Here, we investigate how individual bees react to different alarm pheromone concentrations, and how this evolved response-pattern leads to better coordination at the group level. We first present an individual dose-response curve to the alarm pheromone, obtained experimentally. Second, we apply Projective Simulation to model each bee as an artificial learning agent that relies on the pheromone concentration to decide whether to sting or not. If the emergent collective performance benefits the colony, the individual reactions that led to it are enhanced via reinforcement learning, thus emulating natural selection. Predators are modeled in a realistic way so that the effect of factors such as their resistance, their killing rate or their frequency of attacks can be studied. We are able to reproduce the experimentally measured response-pattern of real bees, and to identify the main selection pressures that shaped it. Finally, we apply the model to a case study: by tuning the parameters to represent the environmental conditions of European or African bees, we can predict the difference in aggressiveness observed between these two subspecies.
Abstract:Collective behavior, and swarm formation in particular, has been studied from several perspectives within a large variety of fields, ranging from biology to physics. In this work, we apply Projective Simulation to model each individual as an artificial learning agent that interacts with its neighbors and surroundings in order to make decisions and learn from them. Within a reinforcement learning framework, we discuss one-dimensional learning scenarios where agents need to get to food resources to be rewarded. We observe how different types of collective motion emerge depending on the distance the agents need to travel to reach the resources. For instance, strongly aligned swarms emerge when the food source is placed far away from the region where agents are situated initially. In addition, we study the properties of the individual trajectories that occur within the different types of emergent collective dynamics. Agents trained to find distant resources exhibit individual trajectories with L\'evy-like characteristics as a consequence of the collective motion, whereas agents trained to reach nearby resources present Brownian-like trajectories.