Abstract:Currently in the federated setting, no learning schemes leverage the emerging research of explainable artificial intelligence (XAI) in particular the novel learning metrics that help determine how well a model is learning. One of these novel learning metrics is termed `Effective Rank' (ER) which measures the Shannon Entropy of the singular values of a matrix, thus enabling a metric determining how well a layer is mapping. By joining federated learning and the learning metric, effective rank, this work will \textbf{(1)} give the first federated learning metric aggregation method \textbf{(2)} show that effective rank is well-suited to federated problems by out-performing baseline Federated Averaging \cite{konevcny2016federated} and \textbf{(3)} develop a novel weight-aggregation scheme relying on effective rank.
Abstract:The field of computer vision is rapidly evolving, particularly in the context of new methods of neural architecture design. These models contribute to (1) the Climate Crisis - increased CO2 emissions and (2) the Privacy Crisis - data leakage concerns. To address the often overlooked impact the Computer Vision (CV) community has on these crises, we outline a novel ethical framework, \textit{P4AI}: Principlism for AI, an augmented principlistic view of ethical dilemmas within AI. We then suggest using P4AI to make concrete recommendations to the community to mitigate the climate and privacy crises.
Abstract:Climate change continues to be a pressing issue that currently affects society at-large. It is important that we as a society, including the Computer Vision (CV) community take steps to limit our impact on the environment. In this paper, we (a) analyze the effect of diminishing returns on CV methods, and (b) propose a \textit{``NoFADE''}: a novel entropy-based metric to quantify model--dataset--complexity relationships. We show that some CV tasks are reaching saturation, while others are almost fully saturated. In this light, NoFADE allows the CV community to compare models and datasets on a similar basis, establishing an agnostic platform.
Abstract:Neural Architecture Search (NAS) has shifted network design from using human intuition to leveraging search algorithms guided by evaluation metrics. We study channel size optimization in convolutional neural networks (CNN) and identify the role it plays in model accuracy and complexity. Current channel size selection methods are generally limited by discrete sample spaces while suffering from manual iteration and simple heuristics. To solve this, we introduce an efficient dynamic scaling algorithm -- CONet -- that automatically optimizes channel sizes across network layers for a given CNN. Two metrics -- ``\textit{Rank}" and "\textit{Rank Average Slope}" -- are introduced to identify the information accumulated in training. The algorithm dynamically scales channel sizes up or down over a fixed searching phase. We conduct experiments on CIFAR10/100 and ImageNet datasets and show that CONet can find efficient and accurate architectures searched in ResNet, DARTS, and DARTS+ spaces that outperform their baseline models.
Abstract:Climate change is a pressing issue that is currently affecting and will affect every part of our lives. It's becoming incredibly vital we, as a society, address the climate crisis as a universal effort, including those in the Computer Vision (CV) community. In this work, we analyze the total cost of CO2 emissions by breaking it into (1) the architecture creation cost and (2) the life-time evaluation cost. We show that over time, these costs are non-negligible and are having a direct impact on our future. Importantly, we conduct an ethical analysis of how the CV-community is unintentionally overlooking its own ethical AI principles by emitting this level of CO2. To address these concerns, we propose adding "enforcement" as a pillar of ethical AI and provide some recommendations for how architecture designers and broader CV community can curb the climate crisis.