Abstract:Autonomous driving car is becoming more of a reality, as a key component,high-definition(HD) maps shows its value in both market place and industry. Even though HD maps generation from LiDAR or stereo/perspective imagery has achieved impressive success, its inherent defects cannot be ignored. In this paper, we proposal a novel method for Highway HD maps modeling using pixel-wise segmentation on satellite imagery and formalized hypotheses linking, which is cheaper and faster than current HD maps modeling approaches from LiDAR point cloud and perspective view imagery, and let it becomes an ideal complementary of state of the art. We also manual code/label an HD road model dataset as ground truth, aligned with Bing tile image server, to train, test and evaluate our methodology. This dataset will be publish at same time to contribute research in HD maps modeling from aerial imagery.
Abstract:We propose a method for using synthetic data to help learning classifiers. Synthetic data, even is generated based on real data, normally results in a shift from the distribution of real data in feature space. To bridge the gap between the real and synthetic data, and jointly learn from synthetic and real data, this paper proposes a Multichannel Autoencoder(MCAE). We show that by suing MCAE, it is possible to learn a better feature representation for classification. To evaluate the proposed approach, we conduct experiments on two types of datasets. Experimental results on two datasets validate the efficiency of our MCAE model and our methodology of generating synthetic data.