Abstract:The social NLP research community witness a recent surge in the computational advancements of mental health analysis to build responsible AI models for a complex interplay between language use and self-perception. Such responsible AI models aid in quantifying the psychological concepts from user-penned texts on social media. On thinking beyond the low-level (classification) task, we advance the existing binary classification dataset, towards a higher-level task of reliability analysis through the lens of explanations, posing it as one of the safety measures. We annotate the LoST dataset to capture nuanced textual cues that suggest the presence of low self-esteem in the posts of Reddit users. We further state that the NLP models developed for determining the presence of low self-esteem, focus more on three types of textual cues: (i) Trigger: words that triggers mental disturbance, (ii) LoST indicators: text indicators emphasizing low self-esteem, and (iii) Consequences: words describing the consequences of mental disturbance. We implement existing classifiers to examine the attention mechanism in pre-trained language models (PLMs) for a domain-specific psychology-grounded task. Our findings suggest the need of shifting the focus of PLMs from Trigger and Consequences to a more comprehensive explanation, emphasizing LoST indicators while determining low self-esteem in Reddit posts.
Abstract:With a surge in identifying suicidal risk and its severity in social media posts, we argue that a more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. The success of computational intelligence techniques for inferring mental illness from social media resources, points to natural language processing as a lens for determining Interpersonal Risk Factors (IRF) in human writings. Motivated with limited availability of datasets for social NLP research community, we construct and release a new annotated dataset with human-labelled explanations and classification of IRF affecting mental disturbance on social media: (i) Thwarted Belongingness (TBe), and (ii) Perceived Burdensomeness (PBu). We establish baseline models on our dataset facilitating future research directions to develop real-time personalized AI models by detecting patterns of TBe and PBu in emotional spectrum of user's historical social media profile.