Abstract:The ongoing modernization of the power system, involving new equipment installations and upgrades, exposes the power system to the introduction of malware into its operation through supply chain attacks. Supply chain attacks present a significant threat to power systems, allowing cybercriminals to bypass network defenses and execute deliberate attacks at the physical layer. Given the exponential advancements in machine intelligence, cybercriminals will leverage this technology to create sophisticated and adaptable attacks that can be incorporated into supply chain attacks. We demonstrate the use of reinforcement learning for developing intelligent attacks incorporated into supply chain attacks against generation control devices. We simulate potential disturbances impacting frequency and voltage regulation. The presented method can provide valuable guidance for defending against supply chain attacks.
Abstract:LiDARs and cameras are the two main sensors that are planned to be included in many announced autonomous vehicles prototypes. Each of the two provides a unique form of data from a different perspective to the surrounding environment. In this paper, we explore and attempt to answer the question: is there an added benefit by fusing those two forms of data for the purpose of semantic segmentation within the context of autonomous driving? We also attempt to show at which level does said fusion prove to be the most useful. We evaluated our algorithms on the publicly available SemanticKITTI dataset. All fusion models show improvements over the base model, with the mid-level fusion showing the highest improvement of 2.7% in terms of mean Intersection over Union (mIoU) metric.