Abstract:Wireless spectrum regulation is a complex and demanding process due to the rapid pace of technological progress, increasing demand for spectrum, and a multitude of stakeholders with potentially conflicting interests, alongside significant economic implications. To navigate this, regulators must engage effectively with all parties, keep pace with global technology trends, conduct technical evaluations, issue licenses in a timely manner, and comply with various legal and policy frameworks. In light of these challenges, this paper demonstrates example applications of Large Language Models (LLMs) to expedite spectrum regulatory processes. We explore various roles that LLMs can play in this context while identifying some of the challenges to address. The paper also offers practical case studies and insights, with appropriate experiments, highlighting the transformative potential of LLMs in spectrum management.
Abstract:Object recognition systems are usually trained and evaluated on high resolution images. However, in real world applications, it is common that the images have low resolutions or have small sizes. In this study, we first track the performance of the state-of-the-art deep object recognition network, Faster- RCNN, as a function of image resolution. The results reveals negative effects of low resolution images on recognition performance. They also show that different spatial frequencies convey different information about the objects in recognition process. It means multi-resolution recognition system can provides better insight into optimal selection of features that results in better recognition of objects. This is similar to the mechanisms of the human visual systems that are able to implement multi-scale representation of a visual scene simultaneously. Then, we propose a multi-resolution object recognition framework rather than a single-resolution network. The proposed framework is evaluated on the PASCAL VOC2007 database. The experimental results show the performance of our adapted multi-resolution Faster-RCNN framework outperforms the single-resolution Faster-RCNN on input images with various resolutions with an increase in the mean Average Precision (mAP) of 9.14% across all resolutions and 1.2% on the full-spectrum images. Furthermore, the proposed model yields robustness of the performance over a wide range of spatial frequencies.
Abstract:As the services and requirements of next-generation wireless networks become increasingly diversified, it is estimated that the current frequency bands of mobile network operators (MNOs) will be unable to cope with the immensity of anticipated demands. Due to spectrum scarcity, there has been a growing trend among stakeholders toward identifying practical solutions to make the most productive use of the exclusively allocated bands on a shared basis through spectrum sharing mechanisms. However, due to the technical complexities of these mechanisms, their design presents challenges, as it requires coordination among multiple entities. To address this challenge, in this paper, we begin with a detailed review of the recent literature on spectrum sharing methods, classifying them on the basis of their operational frequency regime that is, whether they are implemented to operate in licensed bands (e.g., licensed shared access (LSA), spectrum access system (SAS), and dynamic spectrum sharing (DSS)) or unlicensed bands (e.g., LTE-unlicensed (LTE-U), licensed assisted access (LAA), MulteFire, and new radio-unlicensed (NR-U)). Then, in order to narrow the gap between the standardization and vendor-specific implementations, we provide a detailed review of the potential implementation scenarios and necessary amendments to legacy cellular networks from the perspective of telecom vendors and regulatory bodies. Next, we analyze applications of artificial intelligence (AI) and machine learning (ML) techniques for facilitating spectrum sharing mechanisms and leveraging the full potential of autonomous sharing scenarios. Finally, we conclude the paper by presenting open research challenges, which aim to provide insights into prospective research endeavors.