Abstract:Objective: This study explores a semi-supervised learning (SSL), pseudo-labeled strategy using diverse datasets to enhance lung cancer (LCa) survival predictions, analyzing Handcrafted and Deep Radiomic Features (HRF/DRF) from PET/CT scans with Hybrid Machine Learning Systems (HMLS). Methods: We collected 199 LCa patients with both PET & CT images, obtained from The Cancer Imaging Archive (TCIA) and our local database, alongside 408 head&neck cancer (HNCa) PET/CT images from TCIA. We extracted 215 HRFs and 1024 DRFs by PySERA and a 3D-Autoencoder, respectively, within the ViSERA software, from segmented primary tumors. The supervised strategy (SL) employed a HMLSs: PCA connected with 4 classifiers on both HRF and DRFs. SSL strategy expanded the datasets by adding 408 pseudo-labeled HNCa cases (labeled by Random Forest algorithm) to 199 LCa cases, using the same HMLSs techniques. Furthermore, Principal Component Analysis (PCA) linked with 4 survival prediction algorithms were utilized in survival hazard ratio analysis. Results: SSL strategy outperformed SL method (p-value<0.05), achieving an average accuracy of 0.85 with DRFs from PET and PCA+ Multi-Layer Perceptron (MLP), compared to 0.65 for SL strategy using DRFs from CT and PCA+ K-Nearest Neighbor (KNN). Additionally, PCA linked with Component-wise Gradient Boosting Survival Analysis on both HRFs and DRFs, as extracted from CT, had an average c-index of 0.80 with a Log Rank p-value<<0.001, confirmed by external testing. Conclusions: Shifting from HRFs and SL to DRFs and SSL strategies, particularly in contexts with limited data points, enabling CT or PET alone to significantly achieve high predictive performance.
Abstract:This study investigates the foundational characteristics of image-to-image translation networks, specifically examining their suitability and transferability within the context of routine clinical environments, despite achieving high levels of performance, as indicated by a Structural Similarity Index (SSIM) exceeding 0.95. The evaluation study was conducted using data from 794 patients diagnosed with Prostate cancer. To synthesize MRI from Ultrasound images, we employed five widely recognized image to image translation networks in medical imaging: 2DPix2Pix, 2DCycleGAN, 3DCycleGAN, 3DUNET, and 3DAutoEncoder. For quantitative assessment, we report four prevalent evaluation metrics Mean Absolute Error, Mean Square Error, Structural Similarity Index (SSIM), and Peak Signal to Noise Ratio. Moreover, a complementary analysis employing Radiomic features (RF) via Spearman correlation coefficient was conducted to investigate, for the first time, whether networks achieving high performance, SSIM greater than 0.9, could identify low-level RFs. The RF analysis showed 76 features out of 186 RFs were discovered via just 2DPix2Pix algorithm while half of RFs were lost in the translation process. Finally, a detailed qualitative assessment by five medical doctors indicated a lack of low level feature discovery in image to image translation tasks.