Abstract:Plastic has imbibed itself as an indispensable part of our day to day activities, becoming a source of problems due to its non-biodegradable nature and cheaper production prices. With these problems, comes the challenge of mitigating and responding to the aftereffects of disposal or the lack of proper disposal which leads to waste concentrating in locations and disturbing ecosystems for both plants and animals. As plastic debris levels continue to rise with the accumulation of waste in garbage patches in landfills and more hazardously in natural water bodies, swift action is necessary to plug or cease this flow. While manual sorting operations and detection can offer a solution, they can be augmented using highly advanced computer imagery linked with robotic appendages for removing wastes. The primary application of focus in this report are the much-discussed Computer Vision and Open Vision which have gained novelty for their light dependence on internet and ability to relay information in remote areas. These applications can be applied to the creation of edge-based mobility devices that can as a counter to the growing problem of plastic debris in oceans and rivers, demanding little connectivity and still offering the same results with reasonably timed maintenance. The principal findings of this project cover the various methods that were tested and deployed to detect waste in images, as well as comparing them against different waste types. The project has been able to produce workable models that can perform on time detection of sampled images using an augmented CNN approach. Latter portions of the project have also achieved a better interpretation of the necessary preprocessing steps required to arrive at the best accuracies, including the best hardware for expanding waste detection studies to larger environments.
Abstract:DDoS attacks involve overwhelming a target system with a large number of requests or traffic from multiple sources, disrupting the normal traffic of a targeted server, service, or network. Distinguishing between legitimate traffic and malicious traffic is a challenging task. It is possible to classify legitimate traffic and malicious traffic and analysis the network traffic by using machine learning and deep learning techniques. However, an inter-model explanation implemented to classify a traffic flow whether is benign or malicious is an important investigation of the inner working theory of the model to increase the trustworthiness of the model. Explainable Artificial Intelligence (XAI) can explain the decision-making of the machine learning models that can be classified and identify DDoS traffic. In this context, we proposed a framework that can not only classify legitimate traffic and malicious traffic of DDoS attacks but also use SHAP to explain the decision-making of the classifier model. To address this concern, we first adopt feature selection techniques to select the top 20 important features based on feature importance techniques (e.g., XGB-based SHAP feature importance). Following that, the Multi-layer Perceptron Network (MLP) part of our proposed model uses the optimized features of the DDoS attack dataset as inputs to classify legitimate and malicious traffic. We perform extensive experiments with all features and selected features. The evaluation results show that the model performance with selected features achieves above 99\% accuracy. Finally, to provide interpretability, XAI can be adopted to explain the model performance between the prediction results and features based on global and local explanations by SHAP, which can better explain the results achieved by our proposed framework.
Abstract:The effectiveness of machine learning models is significantly affected by the size of the dataset and the quality of features as redundant and irrelevant features can radically degrade the performance. This paper proposes IGRF-RFE: a hybrid feature selection method tasked for multi-class network anomalies using a Multilayer perceptron (MLP) network. IGRF-RFE can be considered as a feature reduction technique based on both the filter feature selection method and the wrapper feature selection method. In our proposed method, we use the filter feature selection method, which is the combination of Information Gain and Random Forest Importance, to reduce the feature subset search space. Then, we apply recursive feature elimination(RFE) as a wrapper feature selection method to further eliminate redundant features recursively on the reduced feature subsets. Our experimental results obtained based on the UNSW-NB15 dataset confirm that our proposed method can improve the accuracy of anomaly detection while reducing the feature dimension. The results show that the feature dimension is reduced from 42 to 23 while the multi-classification accuracy of MLP is improved from 82.25% to 84.24%.
Abstract:Network traffic data is a combination of different data bytes packets under different network protocols. These traffic packets have complex time-varying non-linear relationships. Existing state-of-the-art methods rise up to this challenge by fusing features into multiple subsets based on correlations and using hybrid classification techniques that extract spatial and temporal characteristics. This often requires high computational cost and manual support that limit them for real-time processing of network traffic. To address this, we propose a new novel feature extraction method based on covariance matrices that extract spatial-temporal characteristics of network traffic data for detecting malicious network traffic behavior. The covariance matrices in our proposed method not just naturally encode the mutual relationships between different network traffic values but also have well-defined geometry that falls in the Riemannian manifold. Riemannian manifold is embedded with distance metrics that facilitate extracting discriminative features for detecting malicious network traffic. We evaluated our model on NSL-KDD and UNSW-NB15 datasets and showed our proposed method significantly outperforms the conventional method and other existing studies on the dataset.
Abstract:Malware authors apply different obfuscation techniques on the generic feature of malware (i.e., unique malware signature) to create new variants to avoid detection. Existing Siamese Neural Network (SNN) based malware detection methods fail to correctly classify different malware families when similar generic features are shared across multiple malware variants resulting in high false-positive rates. To address this issue, we propose a novel Task-Aware Meta Learning-based Siamese Neural Network resilient against obfuscated malware while able to detect malware trained with one or a few training samples. Using entropy features of each malware signature alongside image features as task inputs, our task-aware meta leaner generates the parameters for the feature layers to more accurately adjust the feature embedding for different malware families. In addition, our model utilizes meta-learning with the extracted features of a pre-trained network (e.g., VGG-16) to avoid the bias typically associated with a model trained with a limited number of training samples. Our proposed approach is highly effective in recognizing unique malware signatures, thus correctly classifying malware samples that belong to the same malware family even in the presence of obfuscation technique applied to malware. Our experimental results, validated with N-way on N-shot learning, show that our model is highly effective in classification accuracy exceeding the rate>91% compared to other similar methods.