Malware authors apply different obfuscation techniques on the generic feature of malware (i.e., unique malware signature) to create new variants to avoid detection. Existing Siamese Neural Network (SNN) based malware detection methods fail to correctly classify different malware families when similar generic features are shared across multiple malware variants resulting in high false-positive rates. To address this issue, we propose a novel Task-Aware Meta Learning-based Siamese Neural Network resilient against obfuscated malware while able to detect malware trained with one or a few training samples. Using entropy features of each malware signature alongside image features as task inputs, our task-aware meta leaner generates the parameters for the feature layers to more accurately adjust the feature embedding for different malware families. In addition, our model utilizes meta-learning with the extracted features of a pre-trained network (e.g., VGG-16) to avoid the bias typically associated with a model trained with a limited number of training samples. Our proposed approach is highly effective in recognizing unique malware signatures, thus correctly classifying malware samples that belong to the same malware family even in the presence of obfuscation technique applied to malware. Our experimental results, validated with N-way on N-shot learning, show that our model is highly effective in classification accuracy exceeding the rate>91% compared to other similar methods.