Abstract:One of the core components of our world models is 'intuitive physics' - an understanding of objects, space, and causality. This capability enables us to predict events, plan action and navigate environments, all of which rely on a composite sense of objecthood. Despite its importance, there is no single, unified account of objecthood, though multiple theoretical frameworks provide insights. In the first part of this paper, we present a comprehensive overview of the main theoretical frameworks in objecthood research - Gestalt psychology, enactive cognition, and developmental psychology - and identify the core capabilities each framework attributes to object understanding, as well as what functional roles they play in shaping world models in biological agents. Given the foundational role of objecthood in world modelling, understanding objecthood is also essential in AI. In the second part of the paper, we evaluate how current AI paradigms approach and test objecthood capabilities compared to those in cognitive science. We define an AI paradigm as a combination of how objecthood is conceptualised, the methods used for studying objecthood, the data utilised, and the evaluation techniques. We find that, whilst benchmarks can detect that AI systems model isolated aspects of objecthood, the benchmarks cannot detect when AI systems lack functional integration across these capabilities, not solving the objecthood challenge fully. Finally, we explore novel evaluation approaches that align with the integrated vision of objecthood outlined in this paper. These methods are promising candidates for advancing from isolated object capabilities toward general-purpose AI with genuine object understanding in real-world contexts.
Abstract:The integration of Large Language Models (LLMs) in social robotics presents a unique set of ethical challenges and social impacts. This research is set out to identify ethical considerations that arise in the design and development of these two technologies in combination. Using LLMs for social robotics may provide benefits, such as enabling natural language open-domain dialogues. However, the intersection of these two technologies also gives rise to ethical concerns related to misinformation, non-verbal cues, emotional disruption, and biases. The robot's physical social embodiment adds complexity, as ethical hazards associated with LLM-based Social AI, such as hallucinations and misinformation, can be exacerbated due to the effects of physical embodiment on social perception and communication. To address these challenges, this study employs an empirical design justice-based methodology, focusing on identifying socio-technical ethical considerations through a qualitative co-design and interaction study. The purpose of the study is to identify ethical considerations relevant to the process of co-design of, and interaction with a humanoid social robot as the interface of a LLM, and to evaluate how a design justice methodology can be used in the context of designing LLMs-based social robotics. The findings reveal a mapping of ethical considerations arising in four conceptual dimensions: interaction, co-design, terms of service and relationship and evaluates how a design justice approach can be used empirically in the intersection of LLMs and social robotics.
Abstract:This paper presents a novel human-robot interaction setup for robot and human learning of symbolic language for identifying robot homeostatic needs. The robot and human learn to use and respond to the same language symbols that convey homeostatic needs and the stimuli that satisfy the homeostatic needs, respectively. We adopted a differential outcomes training (DOT) protocol whereby the robot provides feedback specific (differential) to its internal needs (e.g. `hunger') when satisfied by the correct stimulus (e.g. cookie). We found evidence that DOT can enhance the human's learning efficiency, which in turn enables more efficient robot language acquisition. The robot used in the study has a vocabulary similar to that of a human infant in the linguistic ``babbling'' phase. The robot software architecture is built upon a model for affect-grounded language acquisition where the robot associates vocabulary with internal needs (hunger, thirst, curiosity) through interactions with the human. The paper presents the results of an initial pilot study conducted with the interactive setup, which reveal that the robot's language acquisition achieves higher convergence rate in the DOT condition compared to the non-DOT control condition. Additionally, participants reported positive affective experiences, feeling of being in control, and an empathetic connection with the robot. This mutual learning (teacher-student learning) approach offers a potential contribution of facilitating cognitive interventions with DOT (e.g. for people with dementia) through increased therapy adherence as a result of engaging humans more in training tasks by taking an active teaching-learning role. The homeostatic motivational grounding of the robot's language acquisition has potential to contribute to more ecologically valid and social (collaborative/nurturing) interactions with robots.