Abstract:We present an efficient finetuning methodology for neural-network filters which are applied as a postprocessing artifact-removal step in video coding pipelines. The fine-tuning is performed at encoder side to adapt the neural network to the specific content that is being encoded. In order to maximize the PSNR gain and minimize the bitrate overhead, we propose to finetune only the convolutional layers' biases. The proposed method achieves convergence much faster than conventional finetuning approaches, making it suitable for practical applications. The weight-update can be included into the video bitstream generated by the existing video codecs. We show that our method achieves up to 9.7% average BD-rate gain when compared to the state-of-art Versatile Video Coding (VVC) standard codec on 7 test sequences.
Abstract:In this paper, we present a novel approach for fine-tuning a decoder-side neural network in the context of image compression, such that the weight-updates are better compressible. At encoder side, we fine-tune a pre-trained artifact removal network on target data by using a compression objective applied on the weight-update. In particular, the compression objective encourages weight-updates which are sparse and closer to quantized values. This way, the final weight-update can be compressed more efficiently by pruning and quantization, and can be included into the encoded bitstream together with the image bitstream of a traditional codec. We show that this approach achieves reconstruction quality which is on-par or slightly superior to a traditional codec, at comparable bitrates. To our knowledge, this is the first attempt to combine image compression and neural network's weight update compression.