Abstract:We revisit the classical result of Morris et al.~(AAAI'19) that message-passing graphs neural networks (MPNNs) are equal in their distinguishing power to the Weisfeiler--Leman (WL) isomorphism test. Morris et al.~show their simulation result with ReLU activation function and $O(n)$-dimensional feature vectors, where $n$ is the number of nodes of the graph. By introducing randomness into the architecture, Aamand et al.~(NeurIPS'22) were able to improve this bound to $O(\log n)$-dimensional feature vectors, again for ReLU activation, although at the expense of guaranteeing perfect simulation only with high probability. Recently, Amir et al.~(NeurIPS'23) have shown that for any non-polynomial analytic activation function, it is enough to use just 1-dimensional feature vectors. In this paper, we give a simple proof of the result of Amit et al.~and provide an independent experimental validation of it.
Abstract:We contribute to the study of formal languages that can be recognized by transformer encoders. We focus on two self-attention mechanisms: (1) UHAT (Unique Hard Attention Transformers) and (2) AHAT (Average Hard Attention Transformers). UHAT encoders are known to recognize only languages inside the circuit complexity class ${\sf AC}^0$, i.e., accepted by a family of poly-sized and depth-bounded boolean circuits with unbounded fan-ins. On the other hand, AHAT encoders can recognize languages outside ${\sf AC}^0$), but their expressive power still lies within the bigger circuit complexity class ${\sf TC}^0$, i.e., ${\sf AC}^0$-circuits extended by majority gates. We first show a negative result that there is an ${\sf AC}^0$-language that cannot be recognized by an UHAT encoder. On the positive side, we show that UHAT encoders can recognize a rich fragment of ${\sf AC}^0$-languages, namely, all languages definable in first-order logic with arbitrary unary numerical predicates. This logic, includes, for example, all regular languages from ${\sf AC}^0$. We then show that AHAT encoders can recognize all languages of our logic even when we enrich it with counting terms. We apply these results to derive new results on the expressive power of UHAT and AHAT up to permutation of letters (a.k.a. Parikh images).
Abstract:We consider online learning in the model where a learning algorithm can access the class only via the consistency oracle -- an oracle, that, at any moment, can give a function from the class that agrees with all examples seen so far. This model was recently considered by Assos et al. (COLT'23). It is motivated by the fact that standard methods of online learning rely on computing the Littlestone dimension of subclasses, a problem that is computationally intractable. Assos et al. gave an online learning algorithm in this model that makes at most $C^d$ mistakes on classes of Littlestone dimension $d$, for some absolute unspecified constant $C > 0$. We give a novel algorithm that makes at most $O(256^d)$ mistakes. Our proof is significantly simpler and uses only very basic properties of the Littlestone dimension. We also observe that there exists no algorithm in this model that makes at most $2^{d+1}-2$ mistakes. We also observe that our algorithm (as well as the algorithm of Assos et al.) solves an open problem by Hasrati and Ben-David (ALT'23). Namely, it demonstrates that every class of finite Littlestone dimension with recursively enumerable representation admits a computable online learner (that may be undefined on unrealizable samples).
Abstract:In this note, we establish the hardness of approximation of the problem of computing the minimal size of a $\delta$-sufficient reason for decision trees.
Abstract:The Weisfeiler--Lehman (WL) test is a fundamental iterative algorithm for checking isomorphism of graphs. It has also been observed that it underlies the design of several graph neural network architectures, whose capabilities and performance can be understood in terms of the expressive power of this test. Motivated by recent developments in machine learning applications to datasets involving three-dimensional objects, we study when the WL test is {\em complete} for clouds of euclidean points represented by complete distance graphs, i.e., when it can distinguish, up to isometry, any arbitrary such cloud. Our main result states that the $(d-1)$-dimensional WL test is complete for point clouds in $d$-dimensional Euclidean space, for any $d\ge 2$, and that only three iterations of the test suffice. Our result is tight for $d = 2, 3$. We also observe that the $d$-dimensional WL test only requires one iteration to achieve completeness.
Abstract:This paper contributes to the study of CPAC learnability -- a computable version of PAC learning -- by solving three open questions from recent papers. Firstly, we prove that every improperly CPAC learnable class is contained in a class which is properly CPAC learnable with polynomial sample complexity. This confirms a conjecture by Agarwal et al (COLT 2021). Secondly, we show that there exists a decidable class of hypothesis which is properly CPAC learnable, but only with uncomputably fast growing sample complexity. This solves a question from Sterkenburg (COLT 2022). Finally, we construct a decidable class of finite Littlestone dimension which is not improperly CPAC learnable, strengthening a recent result of Sterkenburg (2022) and answering a question posed by Hasrati and Ben-David (ALT 2023). Together with previous work, our results provide a complete landscape for the learnability problem in the CPAC setting.