Abstract:Characters are integral to long-form narratives, but are poorly understood by existing story analysis and generation systems. While prior work has simplified characters via graph-based methods and brief character descriptions, we aim to better tackle the problem of representing complex characters by taking inspiration from advice given to professional writers. We propose CHIRON, a new `character sheet' based representation that organizes and filters textual information about characters. We construct CHIRON sheets in two steps: a Generation Module that prompts an LLM for character information via question-answering and a Validation Module that uses automated reasoning and a domain-specific entailment model to eliminate false facts about a character. We validate CHIRON via the downstream task of masked-character prediction, where our experiments show CHIRON is better and more flexible than comparable summary-based baselines. We also show that metrics derived from CHIRON can be used to automatically infer character-centricity in stories, and that these metrics align with human judgments.
Abstract:While language models have become more capable of producing compelling language, we find there are still gaps in maintaining consistency, especially when describing events in a dynamically changing world. We study the setting of generating narratives in an open world text adventure game, where a graph representation of the underlying game state can be used to train models that consume and output both grounded graph representations and natural language descriptions and actions. We build a large set of tasks by combining crowdsourced and simulated gameplays with a novel dataset of complex actions in order to to construct such models. We find it is possible to improve the consistency of action narration models by training on graph contexts and targets, even if graphs are not present at test time. This is shown both in automatic metrics and human evaluations. We plan to release our code, the new set of tasks, and best performing models.