Abstract:The increasing depth of parametric domain knowledge in large language models (LLMs) is fueling their rapid deployment in real-world applications. In high-stakes and knowledge-intensive tasks, understanding model vulnerabilities is essential for quantifying the trustworthiness of model predictions and regulating their use. The recent discovery of named entities as adversarial examples in natural language processing tasks raises questions about their potential guises in other settings. Here, we propose a powerscaled distance-weighted sampling scheme in embedding space to discover diverse adversarial entities as distractors. We demonstrate its advantage over random sampling in adversarial question answering on biomedical topics. Our approach enables the exploration of different regions on the attack surface, which reveals two regimes of adversarial entities that markedly differ in their characteristics. Moreover, we show that the attacks successfully manipulate token-wise Shapley value explanations, which become deceptive in the adversarial setting. Our investigations illustrate the brittleness of domain knowledge in LLMs and reveal a shortcoming of standard evaluations for high-capacity models.
Abstract:Development and homeostasis in multicellular systems both require exquisite control over spatial molecular pattern formation and maintenance. Advances in spatially-resolved and high-throughput molecular imaging methods such as multiplexed immunofluorescence and spatial transcriptomics (ST) provide exciting new opportunities to augment our fundamental understanding of these processes in health and disease. The large and complex datasets resulting from these techniques, particularly ST, have led to rapid development of innovative machine learning (ML) tools primarily based on deep learning techniques. These ML tools are now increasingly featured in integrated experimental and computational workflows to disentangle signals from noise in complex biological systems. However, it can be difficult to understand and balance the different implicit assumptions and methodologies of a rapidly expanding toolbox of analytical tools in ST. To address this, we summarize major ST analysis goals that ML can help address and current analysis trends. We also describe four major data science concepts and related heuristics that can help guide practitioners in their choices of the right tools for the right biological questions.