Abstract:The proliferation of text-to-image diffusion models has raised significant privacy and security concerns, particularly regarding the generation of copyrighted or harmful images. To address these issues, research on machine unlearning has developed various concept erasure methods, which aim to remove the effect of unwanted data through post-hoc training. However, we show these erasure techniques are vulnerable, where images of supposedly erased concepts can still be generated using adversarially crafted prompts. We introduce RECORD, a coordinate-descent-based algorithm that discovers prompts capable of eliciting the generation of erased content. We demonstrate that RECORD significantly beats the attack success rate of current state-of-the-art attack methods. Furthermore, our findings reveal that models subjected to concept erasure are more susceptible to adversarial attacks than previously anticipated, highlighting the urgency for more robust unlearning approaches. We open source all our code at https://github.com/LucasBeerens/RECORD
Abstract:Neural Cellular Automata (NCA) are a powerful combination of machine learning and mechanistic modelling. We train NCA to learn complex dynamics from time series of images and PDE trajectories. Our method is designed to identify underlying local rules that govern large scale dynamic emergent behaviours. Previous work on NCA focuses on learning rules that give stationary emergent structures. We extend NCA to capture both transient and stable structures within the same system, as well as learning rules that capture the dynamics of Turing pattern formation in nonlinear Partial Differential Equations (PDEs). We demonstrate that NCA can generalise very well beyond their PDE training data, we show how to constrain NCA to respect given symmetries, and we explore the effects of associated hyperparameters on model performance and stability. Being able to learn arbitrary dynamics gives NCA great potential as a data driven modelling framework, especially for modelling biological pattern formation.