Abstract:We establish the first general connection between the design of quantum algorithms and circuit lower bounds. Specifically, let $\mathfrak{C}$ be a class of polynomial-size concepts, and suppose that $\mathfrak{C}$ can be PAC-learned with membership queries under the uniform distribution with error $1/2 - \gamma$ by a time $T$ quantum algorithm. We prove that if $\gamma^2 \cdot T \ll 2^n/n$, then $\mathsf{BQE} \nsubseteq \mathfrak{C}$, where $\mathsf{BQE} = \mathsf{BQTIME}[2^{O(n)}]$ is an exponential-time analogue of $\mathsf{BQP}$. This result is optimal in both $\gamma$ and $T$, since it is not hard to learn any class $\mathfrak{C}$ of functions in (classical) time $T = 2^n$ (with no error), or in quantum time $T = \mathsf{poly}(n)$ with error at most $1/2 - \Omega(2^{-n/2})$ via Fourier sampling. In other words, even a marginal improvement on these generic learning algorithms would lead to major consequences in complexity theory. Our proof builds on several works in learning theory, pseudorandomness, and computational complexity, and crucially, on a connection between non-trivial classical learning algorithms and circuit lower bounds established by Oliveira and Santhanam (CCC 2017). Extending their approach to quantum learning algorithms turns out to create significant challenges. To achieve that, we show among other results how pseudorandom generators imply learning-to-lower-bound connections in a generic fashion, construct the first conditional pseudorandom generator secure against uniform quantum computations, and extend the local list-decoding algorithm of Impagliazzo, Jaiswal, Kabanets and Wigderson (SICOMP 2010) to quantum circuits via a delicate analysis. We believe that these contributions are of independent interest and might find other applications.
Abstract:We propose a learning model called the quantum statistical learning QSQ model, which extends the SQ learning model introduced by Kearns to the quantum setting. Our model can be also seen as a restriction of the quantum PAC learning model: here, the learner does not have direct access to quantum examples, but can only obtain estimates of measurement statistics on them. Theoretically, this model provides a simple yet expressive setting to explore the power of quantum examples in machine learning. From a practical perspective, since simpler operations are required, learning algorithms in the QSQ model are more feasible for implementation on near-term quantum devices. We prove a number of results about the QSQ learning model. We first show that parity functions, (log n)-juntas and polynomial-sized DNF formulas are efficiently learnable in the QSQ model, in contrast to the classical setting where these problems are provably hard. This implies that many of the advantages of quantum PAC learning can be realized even in the more restricted quantum SQ learning model. It is well-known that weak statistical query dimension, denoted by WSQDIM(C), characterizes the complexity of learning a concept class C in the classical SQ model. We show that log(WSQDIM(C)) is a lower bound on the complexity of QSQ learning, and furthermore it is tight for certain concept classes C. Additionally, we show that this quantity provides strong lower bounds for the small-bias quantum communication model under product distributions. Finally, we introduce the notion of private quantum PAC learning, in which a quantum PAC learner is required to be differentially private. We show that learnability in the QSQ model implies learnability in the quantum private PAC model. Additionally, we show that in the private PAC learning setting, the classical and quantum sample complexities are equal, up to constant factors.
Abstract:In this paper we study the quantum learnability of constant-depth classical circuits under the uniform distribution and in the distribution-independent framework of PAC learning. In order to attain our results, we establish connections between quantum learning and quantum-secure cryptosystems. We then achieve the following results. 1) Hardness of learning AC$^0$ and TC$^0$ under the uniform distribution. Our first result concerns the concept class TC$^0$ (resp. AC$^0$), the class of constant-depth and polynomial-sized circuits with unbounded fan-in majority gates (resp. AND, OR, NOT gates). We show that if there exists no quantum polynomial-time (resp. sub-exponential time) algorithm to solve the Learning with Errors (LWE) problem, then there exists no polynomial-time quantum learning algorithm for TC$^0$ (resp. AC$^0$) under the uniform distribution (even with access to quantum membership queries). The main technique in this result uses explicit pseudo-random generators that are believed to be quantum-secure to construct concept classes that are hard to learn quantumly under the uniform distribution. 2) Hardness of learning TC$^0_2$ in the PAC setting. Our second result shows that if there exists no quantum polynomial time algorithm for the LWE problem, then there exists no polynomial time quantum PAC learning algorithm for the class TC$^0_2$, i.e., depth-2 TC$^0$ circuits. The main technique in this result is to establish a connection between the quantum security of public-key cryptosystems and the learnability of a concept class that consists of decryption functions of the cryptosystem. This gives a strong conditional negative answer to one of the "Ten Semi-Grand Challenges for Quantum Computing Theory" raised by Aaronson [Aar05], who asked if AC$^0$ and TC$^0$ can be PAC-learned in quantum polynomial time.