Abstract:Constrained Reinforcement Learning (CRL) tackles sequential decision-making problems where agents are required to achieve goals by maximizing the expected return while meeting domain-specific constraints, which are often formulated as expected costs. In this setting, policy-based methods are widely used since they come with several advantages when dealing with continuous-control problems. These methods search in the policy space with an action-based or parameter-based exploration strategy, depending on whether they learn directly the parameters of a stochastic policy or those of a stochastic hyperpolicy. In this paper, we propose a general framework for addressing CRL problems via gradient-based primal-dual algorithms, relying on an alternate ascent/descent scheme with dual-variable regularization. We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-iterate convergence guarantees under (weak) gradient domination assumptions, improving and generalizing existing results. Then, we design C-PGAE and C-PGPE, the action-based and the parameter-based versions of C-PG, respectively, and we illustrate how they naturally extend to constraints defined in terms of risk measures over the costs, as it is often requested in safety-critical scenarios. Finally, we numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines, demonstrating their effectiveness.
Abstract:Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems. They learn stochastic parametric (hyper)policies by either exploring in the space of actions or in the space of parameters. Stochastic controllers, however, are often undesirable from a practical perspective because of their lack of robustness, safety, and traceability. In common practice, stochastic (hyper)policies are learned only to deploy their deterministic version. In this paper, we make a step towards the theoretical understanding of this practice. After introducing a novel framework for modeling this scenario, we study the global convergence to the best deterministic policy, under (weak) gradient domination assumptions. Then, we illustrate how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy. Finally, we quantitatively compare action-based and parameter-based exploration, giving a formal guise to intuitive results.
Abstract:Stochastic Rising Bandits is a setting in which the values of the expected rewards of the available options increase every time they are selected. This framework models a wide range of scenarios in which the available options are learning entities whose performance improves over time. In this paper, we focus on the Best Arm Identification (BAI) problem for the stochastic rested rising bandits. In this scenario, we are asked, given a fixed budget of rounds, to provide a recommendation about the best option at the end of the selection process. We propose two algorithms to tackle the above-mentioned setting, namely R-UCBE, which resorts to a UCB-like approach, and R-SR, which employs a successive reject procedure. We show that they provide guarantees on the probability of properly identifying the optimal option at the end of the learning process. Finally, we numerically validate the proposed algorithms in synthetic and realistic environments and compare them with the currently available BAI strategies.