Abstract:Social biases and stereotypes are embedded in our culture in part through their presence in our stories, as evidenced by the rich history of humanities and social science literature analyzing such biases in children stories. Because these analyses are often conducted manually and at a small scale, such investigations can benefit from the use of more recent natural language processing methods that examine social bias in models and data corpora. Our work joins this interdisciplinary effort and makes a unique contribution by taking into account the event narrative structures when analyzing the social bias of stories. We propose a computational pipeline that automatically extracts a story's temporal narrative verb-based event chain for each of its characters as well as character attributes such as gender. We also present a verb-based event annotation scheme that can facilitate bias analysis by including categories such as those that align with traditional stereotypes. Through a case study analyzing gender bias in fairy tales, we demonstrate that our framework can reveal bias in not only the unigram verb-based events in which female and male characters participate but also in the temporal narrative order of such event participation.
Abstract:NECE is an event-based text analysis toolkit built for narrative documents. NECE aims to provide users open and easy accesses to an event-based summary and abstraction of long narrative documents through both a graphic interface and a python package, which can be readily used in narrative analysis, understanding, or other advanced purposes. Our work addresses the challenge of long passage events extraction and temporal ordering of key events; at the same time, it offers options to select and view events related to narrative entities, such as main characters and gender groups. We conduct human evaluation to demonstrate the quality of the event chain extraction system and character features mining algorithms. Lastly, we shed light on the toolkit's potential downstream applications by demonstrating its usage in gender bias analysis and Question-Answering tasks.