Abstract:Integrated sensing and communication (ISAC) has garnered significant attention in recent years. In this paper, we delve into the topic of sensing-assisted communication within ISAC systems. More specifically, a novel sensing-assisted channel estimation scheme is proposed for bistatic orthogonal-frequency-division-multiplexing (OFDM) ISAC systems. A framework of sensing-assisted channel estimator is first developed, integrating a tailored low-complexity sensing algorithm to facilitate real-time channel estimation and decoding. To address the potential sensing errors caused by low-complexity sensing algorithms, a sensing-assisted linear minimum mean square error (LMMSE) estimation algorithm is then developed. This algorithm incorporates tolerance factors designed to account for deviations between estimated and true channel parameters, enabling the construction of robust correlation matrices for LMMSE estimation. Additionally, we establish a systematic mechanism for determining these tolerance factors. A comprehensive analysis of the normalized mean square error (NMSE) performance and computational complexity is finally conducted, providing valuable insights into the selection of the estimator's parameters. The effectiveness of our proposed scheme is validated by extensive simulations. Compared to existing methods, our proposed scheme demonstrates superior performance, particularly in high signal-to-noise ratio (SNR) regions or with large bandwidths, while maintaining low computational complexity.
Abstract:Integrated sensing and communications (ISAC) is considered a promising technology in the B5G/6G networks. The channel model is essential for an ISAC system to evaluate the communication and sensing performance. Most existing channel modeling studies focus on the monostatic ISAC channel. In this paper, the channel modeling framework for bistatic ISAC is considered. The proposed channel modeling framework extends the current 3GPP channel modeling framework and ensures the compatibility with the communication channel model. To support the bistatic sensing function, several key features for sensing are added. First, more clusters with weaker power are generated and retained to characterize the potential sensing targets. Second, the target model can be either deterministic or statistical, based on different sensing scenarios. Furthermore, for the statistical case, different reflection models are employed in the generation of rays, taking into account spatial coherence. The effectiveness of the proposed bistatic ISAC channel model framework is validated by both ray tracing simulations and experiment studies. The compatibility with the 3GPP communication channel model and how to use this framework for sensing evaluation are also demonstrated.
Abstract:Integrated sensing and communications (ISAC) has been visioned as a key technique for B5G/6G networks. To support monostatic sensing, a full-duplex radio is indispensable to extract echo signals from targets. Such a radio can also greatly improve network capacity via full-duplex communications. However, full-duplex radios in existing ISAC designs are mainly focused on wireless sensing, while the ability of full-duplex communications is usually ignored. In this article, we provide an overview of full-duplex ISAC (FD-ISAC), where a full-duplex radio is used for both wireless sensing and full-duplex communications in B5G/6G networks, with a focus on the fundamental interference management problem in such networks. First, different ISAC architectures are introduced, considering different full-duplex communication modes and wireless sensing modes. Next, the challenging issues of link-level interference and network-level interference are analyzed, illustrating a critical demand on interference management for FD-ISAC. Potential solutions to interference management are then reviewed from the perspective of radio architecture design, beamforming, mode selection, and resource allocation. The corresponding open problems are also highlighted.