Abstract:In an era where language models are increasingly integrated into decision-making and communication, understanding the biases within Large Language Models (LLMs) becomes imperative, especially when these models are applied in the economic and political domains. This work investigates the impact of fine-tuning and data selection on economic and political biases in LLM. We explore the methodological aspects of biasing LLMs towards specific ideologies, mindful of the biases that arise from their extensive training on diverse datasets. Our approach, distinct from earlier efforts that either focus on smaller models or entail resource-intensive pre-training, employs Parameter-Efficient Fine-Tuning (PEFT) techniques. These techniques allow for the alignment of LLMs with targeted ideologies by modifying a small subset of parameters. We introduce a systematic method for dataset selection, annotation, and instruction tuning, and we assess its effectiveness through both quantitative and qualitative evaluations. Our work analyzes the potential of embedding specific biases into LLMs and contributes to the dialogue on the ethical application of AI, highlighting the importance of deploying AI in a manner that aligns with societal values.
Abstract:Adapting models pre-trained on large-scale datasets to a variety of downstream tasks is a common strategy in deep learning. Consequently, parameter-efficient fine-tuning methods have emerged as a promising way to adapt pre-trained models to different tasks while training only a minimal number of parameters. While most of these methods are designed for single-task adaptation, parameter-efficient training in Multi-Task Learning (MTL) architectures is still unexplored. In this paper, we introduce MTLoRA, a novel framework for parameter-efficient training of MTL models. MTLoRA employs Task-Agnostic and Task-Specific Low-Rank Adaptation modules, which effectively disentangle the parameter space in MTL fine-tuning, thereby enabling the model to adeptly handle both task specialization and interaction within MTL contexts. We applied MTLoRA to hierarchical-transformer-based MTL architectures, adapting them to multiple downstream dense prediction tasks. Our extensive experiments on the PASCAL dataset show that MTLoRA achieves higher accuracy on downstream tasks compared to fully fine-tuning the MTL model while reducing the number of trainable parameters by 3.6x. Furthermore, MTLoRA establishes a Pareto-optimal trade-off between the number of trainable parameters and the accuracy of the downstream tasks, outperforming current state-of-the-art parameter-efficient training methods in both accuracy and efficiency. Our code is publicly available.
Abstract:In this work, we introduce GraPhSyM, a Graph Attention Network (GATv2) model for fast and accurate estimation of post-physical synthesis circuit delay and area metrics from pre-physical synthesis circuit netlists. Once trained, GraPhSyM provides accurate visibility of final design metrics to early EDA stages, such as logic synthesis, without running the slow physical synthesis flow, enabling global co-optimization across stages. Additionally, the swift and precise feedback provided by GraPhSym is instrumental for machine-learning-based EDA optimization frameworks. Given a gate-level netlist of a circuit represented as a graph, GraPhSyM utilizes graph structure, connectivity, and electrical property features to predict the impact of physical synthesis transformations such as buffer insertion and gate sizing. When trained on a dataset of 6000 prefix adder designs synthesized at an aggressive delay target, GraPhSyM can accurately predict the post-synthesis delay (98.3%) and area (96.1%) metrics of unseen adders with a fast 0.22s inference time. Furthermore, we illustrate the compositionality of GraPhSyM by employing the model trained on a fixed delay target to accurately anticipate post-synthesis metrics at a variety of unseen delay targets. Lastly, we report promising generalization capabilities of the GraPhSyM model when it is evaluated on circuits different from the adders it was exclusively trained on. The results show the potential for GraPhSyM to serve as a powerful tool for advanced optimization techniques and as an oracle for EDA machine learning frameworks.
Abstract:Modern Augmented reality applications require performing multiple tasks on each input frame simultaneously. Multi-task learning (MTL) represents an effective approach where multiple tasks share an encoder to extract representative features from the input frame, followed by task-specific decoders to generate predictions for each task. Generally, the shared encoder in MTL models needs to have a large representational capacity in order to generalize well to various tasks and input data, which has a negative effect on the inference latency. In this paper, we argue that due to the large variations in the complexity of the input frames, some computations might be unnecessary for the output. Therefore, we introduce AdaMTL, an adaptive framework that learns task-aware inference policies for the MTL models in an input-dependent manner. Specifically, we attach a task-aware lightweight policy network to the shared encoder and co-train it alongside the MTL model to recognize unnecessary computations. During runtime, our task-aware policy network decides which parts of the model to activate depending on the input frame and the target computational complexity. Extensive experiments on the PASCAL dataset demonstrate that AdaMTL reduces the computational complexity by 43% while improving the accuracy by 1.32% compared to single-task models. Combined with SOTA MTL methodologies, AdaMTL boosts the accuracy by 7.8% while improving the efficiency by 3.1X. When deployed on Vuzix M4000 smart glasses, AdaMTL reduces the inference latency and the energy consumption by up to 21.8% and 37.5%, respectively, compared to the static MTL model. Our code is publicly available at https://github.com/scale-lab/AdaMTL.git.