Abstract:Accurate segmentation of anatomical structures in ultrasound (US) images, particularly small ones, is challenging due to noise and variability in imaging conditions (e.g., probe position, patient anatomy, tissue characteristics and pathology). To address this, we introduce Segment Anything Small (SAS), a simple yet effective scale- and texture-aware data augmentation technique designed to enhance the performance of deep learning models for segmenting small anatomical structures in ultrasound images. SAS employs a dual transformation strategy: (1) simulating diverse organ scales by resizing and embedding organ thumbnails into a black background, and (2) injecting noise into regions of interest to simulate varying tissue textures. These transformations generate realistic and diverse training data without introducing hallucinations or artifacts, improving the model's robustness to noise and variability. We fine-tuned a promptable foundation model on a controlled organ-specific medical imaging dataset and evaluated its performance on one internal and five external datasets. Experimental results demonstrate significant improvements in segmentation performance, with Dice score gains of up to 0.35 and an average improvement of 0.16 [95% CI 0.132,0.188]. Additionally, our iterative point prompts provide precise control and adaptive refinement, achieving performance comparable to bounding box prompts with just two points. SAS enhances model robustness and generalizability across diverse anatomical structures and imaging conditions, particularly for small structures, without compromising the accuracy of larger ones. By offering a computationally efficient solution that eliminates the need for extensive human labeling efforts, SAS emerges as a powerful tool for advancing medical image analysis, particularly in resource-constrained settings.
Abstract:Quality education, one of the seventeen sustainable development goals (SDGs) identified by the United Nations General Assembly, stands to benefit enormously from the adoption of artificial intelligence (AI) driven tools and technologies. The concurrent boom of necessary infrastructure, digitized data and general social awareness has propelled massive research and development efforts in the artificial intelligence for education (AIEd) sector. In this review article, we investigate how artificial intelligence, machine learning and deep learning methods are being utilized to support students, educators and administrative staff. We do this through the lens of a novel categorization approach. We consider the involvement of AI-driven methods in the education process in its entirety - from students admissions, course scheduling etc. in the proactive planning phase to knowledge delivery, performance assessment etc. in the reactive execution phase. We outline and analyze the major research directions under proactive and reactive engagement of AI in education using a representative group of 194 original research articles published in the past two decades i.e., 2003 - 2022. We discuss the paradigm shifts in the solution approaches proposed, i.e., in the choice of data and algorithms used over this time. We further dive into how the COVID-19 pandemic challenged and reshaped the education landscape at the fag end of this time period. Finally, we pinpoint existing limitations in adopting artificial intelligence for education and reflect on the path forward.
Abstract:Temporal localization remains an important challenge in video understanding. In this work, we present our solution to the 3rd YouTube-8M Video Understanding Challenge organized by Google Research. Participants were required to build a segment-level classifier using a large-scale training data set with noisy video-level labels and a relatively small-scale validation data set with accurate segment-level labels. We formulated the problem as a multiple instance multi-label learning and developed an attention-based mechanism to selectively emphasize the important frames by attention weights. The model performance is further improved by constructing multiple sets of attention networks. We further fine-tuned the model using the segment-level data set. Our final model consists of an ensemble of attention/multi-attention networks, deep bag of frames models, recurrent neural networks and convolutional neural networks. It ranked 13th on the private leader board and stands out for its efficient usage of resources.