Abstract:Art, as a universal language, can be interpreted in diverse ways, with artworks embodying profound meanings and nuances. The advent of Large Language Models (LLMs) and the availability of Multimodal Large Language Models (MLLMs) raise the question of how these transformative models can be used to assess and interpret the artistic elements of artworks. While research has been conducted in this domain, to the best of our knowledge, a deep and detailed understanding of the technical and expressive features of artworks using LLMs has not been explored. In this study, we investigate the automation of a formal art analysis framework to analyze a high-throughput number of artworks rapidly and examine how their patterns evolve over time. We explore how LLMs can decode artistic expressions, visual elements, composition, and techniques, revealing emerging patterns that develop across periods. Finally, we discuss the strengths and limitations of LLMs in this context, emphasizing their ability to process vast quantities of art-related data and generate insightful interpretations. Due to the exhaustive and granular nature of the results, we have developed interactive data visualizations, available online https://cognartive.github.io/, to enhance understanding and accessibility.
Abstract:In the rapidly advancing field of deep learning, optimising deep neural networks is paramount. This paper introduces a novel method, Enhanced Velocity Estimation (EVE), which innovatively applies different learning rates to distinct components of the gradients. By bifurcating the learning rate, EVE enables more nuanced control and faster convergence, addressing the challenges associated with traditional single learning rate approaches. Utilising a momentum term that adapts to the learning landscape, the method achieves a more efficient navigation of the complex loss surface, resulting in enhanced performance and stability. Extensive experiments demonstrate that EVE significantly outperforms existing optimisation techniques across various benchmark datasets and architectures.
Abstract:In this paper, we propose a novel learning paradigm called "DeepFlorist" for flower classification using ensemble learning as a meta-classifier. DeepFlorist combines the power of deep learning with the robustness of ensemble methods to achieve accurate and reliable flower classification results. The proposed network architecture leverages a combination of dense convolutional and convolutional neural networks (DCNNs and CNNs) to extract high-level features from flower images, followed by a fully connected layer for classification. To enhance the performance and generalization of DeepFlorist, an ensemble learning approach is employed, incorporating multiple diverse models to improve the classification accuracy. Experimental results on benchmark flower datasets demonstrate the effectiveness of DeepFlorist, outperforming state-of-the-art methods in terms of accuracy and robustness. The proposed framework holds significant potential for automated flower recognition systems in real-world applications, enabling advancements in plant taxonomy, conservation efforts, and ecological studies.