FINATRAX - Digital Financial Services and Cross-Organisational Digital Transformations
Abstract:In the new space economy, space agencies, large enterprises, and start-ups aim to launch space multi-robot systems (MRS) for various in-situ resource utilization (ISRU) purposes, such as mapping, soil evaluation, and utility provisioning. However, these stakeholders' competing economic interests may hinder effective collaboration on a centralized digital platform. To address this issue, neutral and transparent infrastructures could facilitate coordination and value exchange among heterogeneous space MRS. While related work has expressed legitimate concerns about the technical challenges associated with blockchain use in space, we argue that weighing its potential economic benefits against its drawbacks is necessary. This paper presents a novel architectural framework and a comprehensive set of requirements for integrating blockchain technology in MRS, aiming to enhance coordination and data integrity in space exploration missions. We explored distributed ledger technology (DLT) to design a non-proprietary architecture for heterogeneous MRS and validated the prototype in a simulated lunar environment. The analyses of our implementation suggest global ISRU efficiency improvements for map exploration, compared to a corresponding group of individually acting robots, and that fostering a coopetitive environment may provide additional revenue opportunities for stakeholders.
Abstract:In the emerging space economy, autonomous robotic missions with specialized goals such as mapping and mining are gaining traction, with agencies and enterprises increasingly investing resources. Multirobot systems (MRS) research has provided many approaches to establish control and communication layers to facilitate collaboration from a technical perspective, such as granting more autonomy to heterogeneous robotic groups through auction-based interactions in mesh networks. However, stakeholders' competing economic interests often prevent them from cooperating within a proprietary ecosystem. Related work suggests that distributed ledger technology (DLT) might serve as a mechanism for enterprises to coordinate workflows and trade services to explore space resources through a transparent, reliable, non-proprietary digital platform. We challenge this perspective by pointing to the core technical weaknesses of blockchains, in particular, increased energy consumption, low throughput, and full transparency through redundancy. Our objective is to advance the discussion in a direction where the benefits of DLT from an economic perspective are weighted against the drawbacks from a technical perspective. We finally present a possible DLT-driven heterogeneous MRS for map exploration to study the opportunities for economic collaboration and competitiveness.
Abstract:Federated machine learning (FL) allows to collectively train models on sensitive data as only the clients' models and not their training data need to be shared. However, despite the attention that research on FL has drawn, the concept still lacks broad adoption in practice. One of the key reasons is the great challenge to implement FL systems that simultaneously achieve fairness, integrity, and privacy preservation for all participating clients. To contribute to solving this issue, our paper suggests a FL system that incorporates blockchain technology, local differential privacy, and zero-knowledge proofs. Our implementation of a proof-of-concept with multiple linear regression illustrates that these state-of-the-art technologies can be combined to a FL system that aligns economic incentives, trust, and confidentiality requirements in a scalable and transparent system.