SpaceR - Space Robotics, SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg
Abstract:Recent advancements in Multi-Robot Systems (MRS) and mesh network technologies pave the way for innovative approaches to explore extreme environments. The Artemis Accords, a series of international agreements, have further catalyzed this progress by fostering cooperation in space exploration, emphasizing the use of cutting-edge technologies. In parallel, the widespread adoption of the Robot Operating System 2 (ROS 2) by companies across various sectors underscores its robustness and versatility. This paper evaluates the performances of available ROS 2 MiddleWare (RMW), such as FastRTPS, CycloneDDS and Zenoh, over a mesh network with a dynamic topology. The final choice of RMW is determined by the one that would fit the most the scenario: an exploration of the extreme extra-terrestrial environment using a MRS. The conducted study in a real environment highlights Zenoh as a potential solution for future applications, showing a reduced delay, reachability, and CPU usage while being competitive on data overhead and RAM usage over a dynamic mesh topology
Abstract:In the new space economy, space agencies, large enterprises, and start-ups aim to launch space multi-robot systems (MRS) for various in-situ resource utilization (ISRU) purposes, such as mapping, soil evaluation, and utility provisioning. However, these stakeholders' competing economic interests may hinder effective collaboration on a centralized digital platform. To address this issue, neutral and transparent infrastructures could facilitate coordination and value exchange among heterogeneous space MRS. While related work has expressed legitimate concerns about the technical challenges associated with blockchain use in space, we argue that weighing its potential economic benefits against its drawbacks is necessary. This paper presents a novel architectural framework and a comprehensive set of requirements for integrating blockchain technology in MRS, aiming to enhance coordination and data integrity in space exploration missions. We explored distributed ledger technology (DLT) to design a non-proprietary architecture for heterogeneous MRS and validated the prototype in a simulated lunar environment. The analyses of our implementation suggest global ISRU efficiency improvements for map exploration, compared to a corresponding group of individually acting robots, and that fostering a coopetitive environment may provide additional revenue opportunities for stakeholders.