Abstract:The quest for successful variational quantum machine learning (QML) relies on the design of suitable parametrized quantum circuits (PQCs), as analogues to neural networks in classical machine learning. Successful QML models must fulfill the properties of trainability and non-dequantization, among others. Recent works have highlighted an intricate interplay between trainability and dequantization of such models, which is still unresolved. In this work we contribute to this debate from the perspective of machine learning, proving a number of results identifying, among others when trainability and non-dequantization are not mutually exclusive. We begin by providing a number of new somewhat broader definitions of the relevant concepts, compared to what is found in other literature, which are operationally motivated, and consistent with prior art. With these precise definitions given and motivated, we then study the relation between trainability and dequantization of variational QML. Next, we also discuss the degrees of "variationalness" of QML models, where we distinguish between models like the hardware efficient ansatz and quantum kernel methods. Finally, we introduce recipes for building PQC-based QML models which are both trainable and nondequantizable, and corresponding to different degrees of variationalness. We do not address the practical utility for such models. Our work however does point toward a way forward for finding more general constructions, for which finding applications may become feasible.
Abstract:We present Qibo, a new open-source software for fast evaluation of quantum circuits and adiabatic evolution which takes full advantage of hardware accelerators. The growing interest in quantum computing and the recent developments of quantum hardware devices motivates the development of new advanced computational tools focused on performance and usage simplicity. In this work we introduce a new quantum simulation framework that enables developers to delegate all complicated aspects of hardware or platform implementation to the library so they can focus on the problem and quantum algorithms at hand. This software is designed from scratch with simulation performance, code simplicity and user friendly interface as target goals. It takes advantage of hardware acceleration such as multi-threading CPU, single GPU and multi-GPU devices.