Abstract:Music genre classification is a critical component of music recommendation systems, generation algorithms, and cultural analytics. In this work, we present an innovative model for classifying music genres using attention-based temporal signature modeling. By processing spectrogram sequences through Convolutional Neural Networks (CNNs) and multi-head attention layers, our approach captures the most temporally significant moments within each piece, crafting a unique "signature" for genre identification. This temporal focus not only enhances classification accuracy but also reveals insights into genre-specific characteristics that can be intuitively mapped to listener perceptions. Our findings offer potential applications in personalized music recommendation systems by highlighting cross-genre similarities and distinctiveness, aligning closely with human musical intuition. This work bridges the gap between technical classification tasks and the nuanced, human experience of genre.
Abstract:In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022. Due to recent successes in leveraging machine learning for clinical decision support, there has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data. A major challenge hindering widespread adoption in clinical use is poor generalization of such networks due to scarcity of large-scale, diverse, balanced prostate imaging datasets for training such networks. In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy. To the best of the authors' knowledge, this is the first study to leverage conditioning for synthesis of prostate cancer imaging. Experimental results show that the proposed strategy, which we call Cancer-Net PCa-Gen, enhances synthesis of diverse prostate images through controllable tumour locations and better anatomical and textural fidelity. These crucial features make it well-suited for augmenting real patient data, enabling neural networks to be trained on a more diverse and comprehensive data distribution. The Cancer-Net PCa-Gen framework and sample images have been made publicly available at https://www.kaggle.com/datasets/deetsadi/cancer-net-pca-gen-dataset as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.