Computer Science Department, New York University
Abstract:This article is about Semantic Role Labeling for English partitive nouns (5%/REL of the price/ARG1; The price/ARG1 rose 5 percent/REL) in the NomBank annotated corpus. Several systems are described using traditional and transformer-based machine learning, as well as ensembling. Our highest scoring system achieves an F1 of 91.74% using "gold" parses from the Penn Treebank and 91.12% when using the Berkeley Neural parser. This research includes both classroom and experimental settings for system development.
Abstract:Translating between languages with drastically different grammatical conventions poses challenges, not just for human interpreters but also for machine translation systems. In this work, we specifically target the translation challenges posed by attributive nouns in Chinese, which frequently cause ambiguities in English translation. By manually inserting the omitted particle X ('DE'). In news article titles from the Penn Chinese Discourse Treebank, we developed a targeted dataset to fine-tune Hugging Face Chinese to English translation models, specifically improving how this critical function word is handled. This focused approach not only complements the broader strategies suggested by previous studies but also offers a practical enhancement by specifically addressing a common error type in Chinese-English translation.
Abstract:Models based on bidirectional encoder representations from transformers (BERT) produce state of the art (SOTA) results on many natural language processing (NLP) tasks such as named entity recognition (NER), part-of-speech (POS) tagging etc. An interesting phenomenon occurs when classifying long documents such as those from the US supreme court where BERT-based models can be considered difficult to use on a first-pass or out-of-the-box basis. In this paper, we experiment with several BERT-based classification techniques for US supreme court decisions or supreme court database (SCDB) and compare them with the previous SOTA results. We then compare our results specifically with SOTA models for long documents. We compare our results for two classification tasks: (1) a broad classification task with 15 categories and (2) a fine-grained classification task with 279 categories. Our best result produces an accuracy of 80\% on the 15 broad categories and 60\% on the fine-grained 279 categories which marks an improvement of 8\% and 28\% respectively from previously reported SOTA results.
Abstract:We describe the design of Comlex Syntax, a computational lexicon providing detailed syntactic information for approximately 38,000 English headwords. We consider the types of errors which arise in creating such a lexicon, and how such errors can be measured and controlled.