Abstract:Geological Carbon Storage GCS is arguably the only scalable net-negative CO2 emission technology available While promising subsurface complexities and heterogeneity of reservoir properties demand a systematic approach to quantify uncertainty when optimizing production and mitigating storage risks which include assurances of Containment and Conformance of injected supercritical CO2 As a first step towards the design and implementation of a Digital Twin for monitoring underground storage operations a machine learning based data-assimilation framework is introduced and validated on carefully designed realistic numerical simulations As our implementation is based on Bayesian inference but does not yet support control and decision-making we coin our approach an uncertainty-aware Digital Shadow To characterize the posterior distribution for the state of CO2 plumes conditioned on multi-modal time-lapse data the envisioned Shadow combines techniques from Simulation-Based Inference SBI and Ensemble Bayesian Filtering to establish probabilistic baselines and assimilate multi-modal data for GCS problems that are challenged by large degrees of freedom nonlinear multi-physics non-Gaussianity and computationally expensive to evaluate fluid flow and seismic simulations To enable SBI for dynamic systems a recursive scheme is proposed where the Digital Shadows neural networks are trained on simulated ensembles for their state and observed data well and/or seismic Once training is completed the systems state is inferred when time-lapse field data becomes available In this computational study we observe that a lack of knowledge on the permeability field can be factored into the Digital Shadows uncertainty quantification To our knowledge this work represents the first proof of concept of an uncertainty-aware in-principle scalable Digital Shadow.
Abstract:As the global deployment of carbon capture and sequestration (CCS) technology intensifies in the fight against climate change, it becomes increasingly imperative to establish robust monitoring and detection mechanisms for potential underground CO2 leakage, particularly through pre-existing or induced faults in the storage reservoir's seals. While techniques such as history matching and time-lapse seismic monitoring of CO2 storage have been used successfully in tracking the evolution of CO2 plumes in the subsurface, these methods lack principled approaches to characterize uncertainties related to the CO2 plumes' behavior. Inclusion of systematic assessment of uncertainties is essential for risk mitigation for the following reasons: (i) CO2 plume-induced changes are small and seismic data is noisy; (ii) changes between regular and irregular (e.g., caused by leakage) flow patterns are small; and (iii) the reservoir properties that control the flow are strongly heterogeneous and typically only available as distributions. To arrive at a formulation capable of inferring flow patterns for regular and irregular flow from well and seismic data, the performance of conditional normalizing flow will be analyzed on a series of carefully designed numerical experiments. While the inferences presented are preliminary in the context of an early CO2 leakage detection system, the results do indicate that inferences with conditional normalizing flows can produce high-fidelity estimates for CO2 plumes with or without leakage. We are also confident that the inferred uncertainty is reasonable because it correlates well with the observed errors. This uncertainty stems from noise in the seismic data and from the lack of precise knowledge of the reservoir's fluid flow properties.
Abstract:With the growing global deployment of carbon capture and sequestration technology to combat climate change, monitoring and detection of potential CO2 leakage through existing or storage induced faults are critical to the safe and long-term viability of the technology. Recent work on time-lapse seismic monitoring of CO2 storage has shown promising results in its ability to monitor the growth of the CO2 plume from surface recorded seismic data. However, due to the low sensitivity of seismic imaging to CO2 concentration, additional developments are required to efficiently interpret the seismic images for leakage. In this work, we introduce a binary classification of time-lapse seismic images to delineate CO2 plumes (leakage) using state-of-the-art deep learning models. Additionally, we localize the leakage region of CO2 plumes by leveraging Class Activation Mapping methods.