Abstract:Clinical notes in healthcare facilities are tagged with the International Classification of Diseases (ICD) code; a list of classification codes for medical diagnoses and procedures. ICD coding is a challenging multilabel text classification problem due to noisy clinical document inputs and long-tailed label distribution. Recent automated ICD coding efforts improve performance by encoding medical notes and codes with additional data and knowledge bases. However, most of them do not reflect how human coders generate the code: first, the coders select general code categories and then look for specific subcategories that are relevant to a patient's condition. Inspired by this, we propose a two-stage decoding mechanism to predict ICD codes. Our model uses the hierarchical properties of the codes to split the prediction into two steps: At first, we predict the parent code and then predict the child code based on the previous prediction. Experiments on the public MIMIC-III data set show that our model performs well in single-model settings without external data or knowledge.
Abstract:Clinical notes are assigned ICD codes - sets of codes for diagnoses and procedures. In the recent years, predictive machine learning models have been built for automatic ICD coding. However, there is a lack of widely accepted benchmarks for automated ICD coding models based on large-scale public EHR data. This paper proposes a public benchmark suite for ICD-10 coding using a large EHR dataset derived from MIMIC-IV, the most recent public EHR dataset. We implement and compare several popular methods for ICD coding prediction tasks to standardize data preprocessing and establish a comprehensive ICD coding benchmark dataset. This approach fosters reproducibility and model comparison, accelerating progress toward employing automated ICD coding in future studies. Furthermore, we create a new ICD-9 benchmark using MIMIC-IV data, providing more data points and a higher number of ICD codes than MIMIC-III. Our open-source code offers easy access to data processing steps, benchmark creation, and experiment replication for those with MIMIC-IV access, providing insights, guidance, and protocols to efficiently develop ICD coding models.