Abstract:Predicting vehicle trajectories, angle and speed is important for safe and comfortable driving. We demonstrate the best predicted angle, speed, and best performance overall winning the top three places of the ICCV 2019 Learning to Drive challenge. Our key contributions are (i) a general neural network system architecture which embeds and fuses together multiple inputs by encoding, and decodes multiple outputs using neural networks, (ii) using pre-trained neural networks for augmenting the given input data with segmentation maps and semantic information, and (iii) leveraging the form and distribution of the expected output in the model.
Abstract:Guided troubleshooting is an inherent task in the domain of technical support services. When a customer experiences an issue with the functioning of a technical service or a product, an expert user helps guide the customer through a set of steps comprising a troubleshooting procedure. The objective is to identify the source of the problem through a set of diagnostic steps and observations, and arrive at a resolution. Procedures containing these set of diagnostic steps and observations in response to different problems are common artifacts in the body of technical support documentation. The ability to use machine learning and linguistics to understand and leverage these procedures for applications like intelligent chatbots or robotic process automation, is crucial. Existing research on question answering or intelligent chatbots does not look within procedures or deep-understand them. In this paper, we outline a system for mining procedures from technical support documents. We create models for solving important subproblems like extraction of procedures, identifying decision points within procedures, identifying blocks of instructions corresponding to these decision points and mapping instructions within a decision block. We also release a dataset containing our manual annotations on publicly available support documents, to promote further research on the problem.