Abstract:The intricate relationship between human decision-making and emotions, particularly guilt and regret, has significant implications on behavior and well-being. Yet, these emotions subtle distinctions and interplay are often overlooked in computational models. This paper introduces a dataset tailored to dissect the relationship between guilt and regret and their unique textual markers, filling a notable gap in affective computing research. Our approach treats guilt and regret recognition as a binary classification task and employs three machine learning and six transformer-based deep learning techniques to benchmark the newly created dataset. The study further implements innovative reasoning methods like chain-of-thought and tree-of-thought to assess the models interpretive logic. The results indicate a clear performance edge for transformer-based models, achieving a 90.4% macro F1 score compared to the 85.3% scored by the best machine learning classifier, demonstrating their superior capability in distinguishing complex emotional states.
Abstract:In recent years, language models and deep learning techniques have revolutionized natural language processing tasks, including emotion detection. However, the specific emotion of guilt has received limited attention in this field. In this research, we explore the applicability of three transformer-based language models for detecting guilt in text and compare their performance for general emotion detection and guilt detection. Our proposed model outformed BERT and RoBERTa models by two and one points respectively. Additionally, we analyze the challenges in developing accurate guilt-detection models and evaluate our model's effectiveness in detecting related emotions like "shame" through qualitative analysis of results.
Abstract:We introduce a novel Natural Language Processing (NLP) task called Guilt detection, which focuses on detecting guilt in text. We identify guilt as a complex and vital emotion that has not been previously studied in NLP, and we aim to provide a more fine-grained analysis of it. To address the lack of publicly available corpora for guilt detection, we created VIC, a dataset containing 4622 texts from three existing emotion detection datasets that we binarized into guilt and no-guilt classes. We experimented with traditional machine learning methods using bag-of-words and term frequency-inverse document frequency features, achieving a 72% f1 score with the highest-performing model. Our study provides a first step towards understanding guilt in text and opens the door for future research in this area.