Abstract:Face Image Quality Assessment (FIQA) techniques have seen steady improvements over recent years, but their performance still deteriorates if the input face samples are not properly aligned. This alignment sensitivity comes from the fact that most FIQA techniques are trained or designed using a specific face alignment procedure. If the alignment technique changes, the performance of most existing FIQA techniques quickly becomes suboptimal. To address this problem, we present in this paper a novel knowledge distillation approach, termed AI-KD that can extend on any existing FIQA technique, improving its robustness to alignment variations and, in turn, performance with different alignment procedures. To validate the proposed distillation approach, we conduct comprehensive experiments on 6 face datasets with 4 recent face recognition models and in comparison to 7 state-of-the-art FIQA techniques. Our results show that AI-KD consistently improves performance of the initial FIQA techniques not only with misaligned samples, but also with properly aligned facial images. Furthermore, it leads to a new state-of-the-art, when used with a competitive initial FIQA approach. The code for AI-KD is made publicly available from: https://github.com/LSIbabnikz/AI-KD.
Abstract:Contemporary face recognition (FR) models achieve near-ideal recognition performance in constrained settings, yet do not fully translate the performance to unconstrained (realworld) scenarios. To help improve the performance and stability of FR systems in such unconstrained settings, face image quality assessment (FIQA) techniques try to infer sample-quality information from the input face images that can aid with the recognition process. While existing FIQA techniques are able to efficiently capture the differences between high and low quality images, they typically cannot fully distinguish between images of similar quality, leading to lower performance in many scenarios. To address this issue, we present in this paper a supervised quality-label optimization approach, aimed at improving the performance of existing FIQA techniques. The developed optimization procedure infuses additional information (computed with a selected FR model) into the initial quality scores generated with a given FIQA technique to produce better estimates of the "actual" image quality. We evaluate the proposed approach in comprehensive experiments with six state-of-the-art FIQA approaches (CR-FIQA, FaceQAN, SER-FIQ, PCNet, MagFace, SDD-FIQA) on five commonly used benchmarks (LFW, CFPFP, CPLFW, CALFW, XQLFW) using three targeted FR models (ArcFace, ElasticFace, CurricularFace) with highly encouraging results.
Abstract:Modern face recognition (FR) models excel in constrained scenarios, but often suffer from decreased performance when deployed in unconstrained (real-world) environments due to uncertainties surrounding the quality of the captured facial data. Face image quality assessment (FIQA) techniques aim to mitigate these performance degradations by providing FR models with sample-quality predictions that can be used to reject low-quality samples and reduce false match errors. However, despite steady improvements, ensuring reliable quality estimates across facial images with diverse characteristics remains challenging. In this paper, we present a powerful new FIQA approach, named DifFIQA, which relies on denoising diffusion probabilistic models (DDPM) and ensures highly competitive results. The main idea behind the approach is to utilize the forward and backward processes of DDPMs to perturb facial images and quantify the impact of these perturbations on the corresponding image embeddings for quality prediction. Because the diffusion-based perturbations are computationally expensive, we also distill the knowledge encoded in DifFIQA into a regression-based quality predictor, called DifFIQA(R), that balances performance and execution time. We evaluate both models in comprehensive experiments on 7 datasets, with 4 target FR models and against 10 state-of-the-art FIQA techniques with highly encouraging results. The source code will be made publicly available.
Abstract:Recent state-of-the-art face recognition (FR) approaches have achieved impressive performance, yet unconstrained face recognition still represents an open problem. Face image quality assessment (FIQA) approaches aim to estimate the quality of the input samples that can help provide information on the confidence of the recognition decision and eventually lead to improved results in challenging scenarios. While much progress has been made in face image quality assessment in recent years, computing reliable quality scores for diverse facial images and FR models remains challenging. In this paper, we propose a novel approach to face image quality assessment, called FaceQAN, that is based on adversarial examples and relies on the analysis of adversarial noise which can be calculated with any FR model learned by using some form of gradient descent. As such, the proposed approach is the first to link image quality to adversarial attacks. Comprehensive (cross-model as well as model-specific) experiments are conducted with four benchmark datasets, i.e., LFW, CFP-FP, XQLFW and IJB-C, four FR models, i.e., CosFace, ArcFace, CurricularFace and ElasticFace, and in comparison to seven state-of-the-art FIQA methods to demonstrate the performance of FaceQAN. Experimental results show that FaceQAN achieves competitive results, while exhibiting several desirable characteristics.
Abstract:Face image quality assessment (FIQA) attempts to improve face recognition (FR) performance by providing additional information about sample quality. Because FIQA methods attempt to estimate the utility of a sample for face recognition, it is reasonable to assume that these methods are heavily influenced by the underlying face recognition system. Although modern face recognition systems are known to perform well, several studies have found that such systems often exhibit problems with demographic bias. It is therefore likely that such problems are also present with FIQA techniques. To investigate the demographic biases associated with FIQA approaches, this paper presents a comprehensive study involving a variety of quality assessment methods (general-purpose image quality assessment, supervised face quality assessment, and unsupervised face quality assessment methods) and three diverse state-of-theart FR models. Our analysis on the Balanced Faces in the Wild (BFW) dataset shows that all techniques considered are affected more by variations in race than sex. While the general-purpose image quality assessment methods appear to be less biased with respect to the two demographic factors considered, the supervised and unsupervised face image quality assessment methods both show strong bias with a tendency to favor white individuals (of either sex). In addition, we found that methods that are less racially biased perform worse overall. This suggests that the observed bias in FIQA methods is to a significant extent related to the underlying face recognition system.
Abstract:While recent face recognition (FR) systems achieve excellent results in many deployment scenarios, their performance in challenging real-world settings is still under question. For this reason, face image quality assessment (FIQA) techniques aim to support FR systems, by providing them with sample quality information that can be used to reject poor quality data unsuitable for recognition purposes. Several groups of FIQA methods relying on different concepts have been proposed in the literature, all of which can be used for generating quality scores of facial images that can serve as pseudo ground-truth (quality) labels and can be exploited for training (regression-based) quality estimation models. Several FIQA appro\-aches show that a significant amount of sample-quality information can be extracted from mated similarity-score distributions generated with some face matcher. Based on this insight, we propose in this paper a quality label optimization approach, which incorporates sample-quality information from mated-pair similarities into quality predictions of existing off-the-shelf FIQA techniques. We evaluate the proposed approach using three state-of-the-art FIQA methods over three diverse datasets. The results of our experiments show that the proposed optimization procedure heavily depends on the number of executed optimization iterations. At ten iterations, the approach seems to perform the best, consistently outperforming the base quality scores of the three FIQA methods, chosen for the experiments.