Abstract:This paper presents UniBERT, a compact multilingual language model that leverages an innovative training framework integrating three components: masked language modeling, adversarial training, and knowledge distillation. Pre-trained on a meticulously curated Wikipedia corpus spanning 107 languages, UniBERT is designed to reduce the computational demands of large-scale models while maintaining competitive performance across various natural language processing tasks. Comprehensive evaluations on four tasks -- named entity recognition, natural language inference, question answering, and semantic textual similarity -- demonstrate that our multilingual training strategy enhanced by an adversarial objective significantly improves cross-lingual generalization. Specifically, UniBERT models show an average relative improvement of 7.72% over traditional baselines, which achieved an average relative improvement of only 1.17%, with statistical analysis confirming the significance of these gains (p-value = 0.0181). This work highlights the benefits of combining adversarial training and knowledge distillation to build scalable and robust language models, thereby advancing the field of multilingual and cross-lingual natural language processing.
Abstract:Correctly identifying multiword expressions (MWEs) is an important task for most natural language processing systems since their misidentification can result in ambiguity and misunderstanding of the underlying text. In this work, we evaluate the performance of the mBERT model for MWE identification in a multilingual context by training it on all 14 languages available in version 1.2 of the PARSEME corpus. We also incorporate lateral inhibition and language adversarial training into our methodology to create language-independent embeddings and improve its capabilities in identifying multiword expressions. The evaluation of our models shows that the approach employed in this work achieves better results compared to the best system of the PARSEME 1.2 competition, MTLB-STRUCT, on 11 out of 14 languages for global MWE identification and on 12 out of 14 languages for unseen MWE identification. Additionally, averaged across all languages, our best approach outperforms the MTLB-STRUCT system by 1.23% on global MWE identification and by 4.73% on unseen global MWE identification.