Scholarly text is often laden with jargon, or specialized language that divides disciplines. We extend past work that characterizes science at the level of word types, by using BERT-based word sense induction to find additional words that are widespread but overloaded with different uses across fields. We define scholarly jargon as discipline-specific word types and senses, and estimate its prevalence across hundreds of fields using interpretable, information-theoretic metrics. We demonstrate the utility of our approach for science of science and computational sociolinguistics by highlighting two key social implications. First, we measure audience design, and find that most fields reduce jargon when publishing in general-purpose journals, but some do so more than others. Second, though jargon has varying correlation with articles' citation rates within fields, it nearly always impedes interdisciplinary impact. Broadly, our measurements can inform ways in which language could be revised to serve as a bridge rather than a barrier in science.