Robust authentication for low-power consumer devices such as doorbell cameras poses a valuable and unique challenge. This work explores the effect of age and aging on the performance of facial authentication methods. Two public age datasets, AgeDB and Morph-II have been used as baselines in this work. A photo-realistic age transformation method has been employed to augment a set of high-quality facial images with various age effects. Then the effect of these synthetic aging data on the high-performance deep-learning-based face recognition model is quantified by using various metrics including Receiver Operating Characteristic (ROC) curves and match score distributions. Experimental results demonstrate that long-term age effects are still a significant challenge for the state-of-the-art facial authentication method.