The beamforming performance of the uniform circular array (UCA) in near-field wideband communication systems is investigated. Compared to uniform linear array (ULA), UCA exhibits uniform effective array aperture in all directions, thus enabling more users to benefit from near-field communications. In this paper, the unique beam squint effect in near-field wideband UCA systems is comprehensively analyzed in both the distance and angular domains. It is rigorously demonstrated that the beam focal point only exists at a specific frequency in wideband UCA systems, resulting in significant beamforming loss. To alleviate this unique beam squint effect, the true-time delay (TTD)-based beamforming architecture is exploited. In particular, two wideband beamforming optimization approaches leveraging TTD units are proposed. 1) Analytical approach: In this approach, the phase shifters (PSs) and the time delay of TTD units are designed based on the analytical formula for beamforming gain. Following this design, the minimum number of TTD units required to achieve a predetermined beamforming gain is quantified. 2) Joint-optimization approach: In this method, the PSs and the TTD units are jointly optimized under practical maximum delay constraints to approximate the optimal unconstrained analog beamformer. Specifically, an efficient alternating optimization algorithm is proposed, where the PSs and the TTD units are alternately updated using either the closed-form solution or the low-complexity linear search approach. Extensive numerical results demonstrate that 1) the proposed beamforming schemes effectively mitigate the beam squint effect, and 2) the joint-optimization approach outperforms the analytical approach in terms of array gain and achievable spectral efficiency.