Human Pose and Shape Estimation (HPSE) from RGB images can be broadly categorized into two main groups: parametric and non-parametric approaches. Parametric techniques leverage a low-dimensional statistical body model for realistic results, whereas recent non-parametric methods achieve higher precision by directly regressing the 3D coordinates of the human body. Despite their strengths, both approaches face limitations: the parameters of statistical body models pose challenges as regression targets, and predicting 3D coordinates introduces computational complexities and issues related to smoothness. In this work, we take a novel approach to address the HPSE problem. We introduce a unique method involving a low-dimensional discrete latent representation of the human mesh, framing HPSE as a classification task. Instead of predicting body model parameters or 3D vertex coordinates, our focus is on forecasting the proposed discrete latent representation, which can be decoded into a registered human mesh. This innovative paradigm offers two key advantages: firstly, predicting a low-dimensional discrete representation confines our predictions to the space of anthropomorphic poses and shapes; secondly, by framing the problem as a classification task, we can harness the discriminative power inherent in neural networks. Our proposed model, VQ-HPS, a transformer-based architecture, forecasts the discrete latent representation of the mesh, trained through minimizing a cross-entropy loss. Our results demonstrate that VQ-HPS outperforms the current state-of-the-art non-parametric approaches while yielding results as realistic as those produced by parametric methods. This highlights the significant potential of the classification approach for HPSE.