Improving user retention with reinforcement learning~(RL) has attracted increasing attention due to its significant importance in boosting user engagement. However, training the RL policy from scratch without hurting users' experience is unavoidable due to the requirement of trial-and-error searches. Furthermore, the offline methods, which aim to optimize the policy without online interactions, suffer from the notorious stability problem in value estimation or unbounded variance in counterfactual policy evaluation. To this end, we propose optimizing user retention with Decision Transformer~(DT), which avoids the offline difficulty by translating the RL as an autoregressive problem. However, deploying the DT in recommendation is a non-trivial problem because of the following challenges: (1) deficiency in modeling the numerical reward value; (2) data discrepancy between the policy learning and recommendation generation; (3) unreliable offline performance evaluation. In this work, we, therefore, contribute a series of strategies for tackling the exposed issues. We first articulate an efficient reward prompt by weighted aggregation of meta embeddings for informative reward embedding. Then, we endow a weighted contrastive learning method to solve the discrepancy between training and inference. Furthermore, we design two robust offline metrics to measure user retention. Finally, the significant improvement in the benchmark datasets demonstrates the superiority of the proposed method.