Shadows are formed when light encounters obstacles, leading to areas of diminished illumination. In computer vision, shadow detection, removal, and generation are crucial for enhancing scene understanding, refining image quality, ensuring visual consistency in video editing, and improving virtual environments. This paper presents a comprehensive survey of shadow detection, removal, and generation in images and videos within the deep learning landscape over the past decade, covering tasks, deep models, datasets, and evaluation metrics. Our key contributions include a comprehensive survey of shadow analysis, standardization of experimental comparisons, exploration of the relationships among model size, speed, and performance, a cross-dataset generalization study, identification of open issues and future directions, and provision of publicly available resources to support further research.