The semiconductor industry has prioritized automating repetitive tasks by closed-loop, autonomous experimentation which enables accelerated optimization of complex multi-step processes. The emergence of machine learning (ML) has ushered in automated process with minimal human intervention. In this work, we develop SemiEpi, a self-driving automation platform capable of executing molecular beam epitaxy (MBE) growth with multi-steps, continuous in-situ monitoring, and on-the-fly feedback control. By integrating standard hardware, homemade software, curve fitting, and multiple ML models, SemiEpi operates autonomously, eliminating the need for extensive expertise in MBE processes to achieve optimal outcomes. The platform actively learns from previous experimental results, identifying favorable conditions and proposing new experiments to achieve the desired results. We standardize and optimize growth for InAs/GaAs quantum dots (QDs) heterostructures to showcase the power of ML-guided multi-step growth. A temperature calibration was implemented to get the initial growth condition, and fine control of the process was executed using ML. Leveraging RHEED movies acquired during the growth, SemiEpi successfully identified and optimized a novel route for multi-step heterostructure growth. This work demonstrates the capabilities of closed-loop, ML-guided systems in addressing challenges in multi-step growth for any device. Our method is critical to achieve repeatable materials growth using commercially scalable tools. Our strategy facilitates the development of a hardware-independent process and enhancing process repeatability and stability, even without exhaustive knowledge of growth parameters.