https://github.com/hustvl/MIMDet}.
We present an approach to efficiently and effectively adapt a masked image modeling (MIM) pre-trained vanilla Vision Transformer (ViT) for object detection, which is based on our two novel observations: (i) A MIM pre-trained vanilla ViT can work surprisingly well in the challenging object-level recognition scenario even with random sampled partial observations, e.g., only 25% ~ 50% of the input sequence. (ii) In order to construct multi-scale representations for object detection, a random initialized compact convolutional stem supplants the pre-trained large kernel patchify stem, and its intermediate features can naturally serve as the higher resolution inputs of a feature pyramid without upsampling. While the pre-trained ViT is only regarded as the third-stage of our detector's backbone instead of the whole feature extractor, resulting in a ConvNet-ViT hybrid architecture. The proposed detector, named MIMDet, enables a MIM pre-trained vanilla ViT to outperform hierarchical Swin Transformer by 2.3 box AP and 2.5 mask AP on COCO, and achieve even better results compared with other adapted vanilla ViT using a more modest fine-tuning recipe while converging 2.8x faster. Code and pre-trained models are available at \url{