Two-tower models are widely adopted in the industrial-scale matching stage across a broad range of application domains, such as content recommendations, advertisement systems, and search engines. This model efficiently handles large-scale candidate item screening by separating user and item representations. However, the decoupling network also leads to a neglect of potential information interaction between the user and item representations. Current state-of-the-art (SOTA) approaches include adding a shallow fully connected layer(i.e., COLD), which is limited by performance and can only be used in the ranking stage. For performance considerations, another approach attempts to capture historical positive interaction information from the other tower by regarding them as the input features(i.e., DAT). Later research showed that the gains achieved by this method are still limited because of lacking the guidance on the next user intent. To address the aforementioned challenges, we propose a "cross-interaction decoupling architecture" within our matching paradigm. This user-tower architecture leverages a diffusion module to reconstruct the next positive intention representation and employs a mixed-attention module to facilitate comprehensive cross-interaction. During the next positive intention generation, we further enhance the accuracy of its reconstruction by explicitly extracting the temporal drift within user behavior sequences. Experiments on two real-world datasets and one industrial dataset demonstrate that our method outperforms the SOTA two-tower models significantly, and our diffusion approach outperforms other generative models in reconstructing item representations.