Studies on interpersonal conflict have a long history and contain many suggestions for conflict typology. We use this as the basis of a novel annotation scheme and release a new dataset of situations and conflict aspect annotations. We then build a classifier to predict whether someone will perceive the actions of one individual as right or wrong in a given situation, outperforming previous work on this task. Our analyses include conflict aspects, but also generated clusters, which are human validated, and show differences in conflict content based on the relationship of participants to the author. Our findings have important implications for understanding conflict and social norms.