Spatiotemporal forecasting is an imperative topic in data science due to its diverse and critical applications in smart cities. Existing works mostly perform consecutive predictions of following steps with observations completely and continuously obtained, where nearest observations can be exploited as key knowledge for instantaneous status estimation. However, the practical issues of early activity planning and sensor failures elicit a brand-new task, i.e., non-consecutive forecasting. In this paper, we define spatiotemporal learning systems with missing observation as Grey Spatiotemporal Systems (G2S) and propose a Factor-Decoupled learning framework for G2S (FDG2S), where the core idea is to hierarchically decouple multi-level factors and enable both flexible aggregations and disentangled uncertainty estimations. Firstly, to compensate for missing observations, a generic semantic-neighboring sequence sampling is devised, which selects representative sequences to capture both periodical regularity and instantaneous variations. Secondly, we turn the predictions of non-consecutive statuses into inferring statuses under expected combined exogenous factors. In particular, a factor-decoupled aggregation scheme is proposed to decouple factor-induced predictive intensity and region-wise proximity by two energy functions of conditional random field. To infer region-wise proximity under flexible factor-wise combinations and enable dynamic neighborhood aggregations, we further disentangle compounded influences of exogenous factors on region-wise proximity and learn to aggregate them. Given the inherent incompleteness and critical applications of G2S, a DisEntangled Uncertainty Quantification is put forward, to identify two types of uncertainty for reliability guarantees and model interpretations.