The vulnerability of deep neural networks to adversarial perturbations has been widely perceived in the computer vision community. From a security perspective, it poses a critical risk for modern vision systems, e.g., the popular Deep Learning as a Service (DLaaS) frameworks. For protecting off-the-shelf deep models while not modifying them, current algorithms typically detect adversarial patterns through discriminative decomposition of natural-artificial data. However, these decompositions are biased towards frequency or spatial discriminability, thus failing to capture subtle adversarial patterns comprehensively. More seriously, they are typically invertible, meaning successful defense-aware (secondary) adversarial attack (i.e., evading the detector as well as fooling the model) is practical under the assumption that the adversary is fully aware of the detector (i.e., the Kerckhoffs's principle). Motivated by such facts, we propose an accurate and secure adversarial example detector, relying on a spatial-frequency discriminative decomposition with secret keys. It expands the above works on two aspects: 1) the introduced Krawtchouk basis provides better spatial-frequency discriminability and thereby is more suitable for capturing adversarial patterns than the common trigonometric or wavelet basis; 2) the extensive parameters for decomposition are generated by a pseudo-random function with secret keys, hence blocking the defense-aware adversarial attack. Theoretical and numerical analysis demonstrates the increased accuracy and security of our detector w.r.t. a number of state-of-the-art algorithms.