Transmission line defect recognition models have traditionally used general pre-trained weights as the initial basis for their training. These models often suffer weak generalization capability due to the lack of domain knowledge in the pre-training dataset. To address this issue, we propose a two-stage transmission-line-oriented contrastive language-image pre-training (TL-CLIP) framework, which lays a more effective foundation for transmission line defect recognition. The pre-training process employs a novel power-specific multimodal algorithm assisted with two power-specific pre-training tasks for better modeling the power-related semantic knowledge contained in the inspection data. To fine-tune the pre-trained model, we develop a transfer learning strategy, namely fine-tuning with pre-training objective (FTP), to alleviate the overfitting problem caused by limited inspection data. Experimental results demonstrate that the proposed method significantly improves the performance of transmission line defect recognition in both classification and detection tasks, indicating clear advantages over traditional pre-trained models in the scene of transmission line inspection.