Various works have been extensively studied in the research of text-to-image generation. Although existing models perform well in text-to-image generation, there are significant challenges when directly employing them to generate images in dialogs. In this paper, we first highlight a new problem: dialog-to-image generation, that is, given the dialog context, the model should generate a realistic image which is consistent with the specified conversation as response. To tackle the problem, we propose an efficient approach for dialog-to-image generation without any intermediate translation, which maximizes the extraction of the semantic information contained in the dialog. Considering the characteristics of dialog structure, we put segment token before each sentence in a turn of a dialog to differentiate different speakers. Then, we fine-tune pre-trained text-to-image models to enable them to generate images conditioning on processed dialog context. After fine-tuning, our approach can consistently improve the performance of various models across multiple metrics. Experimental results on public benchmark demonstrate the effectiveness and practicability of our method.