The motivation of this paper is to develop a smart system using multi-modal vision for next-generation mechanical assembly. It includes two phases where in the first phase human beings teach the assembly structure to a robot and in the second phase the robot finds objects and grasps and assembles them using AI planning. The crucial part of the system is the precision of 3D visual detection and the paper presents multi-modal approaches to meet the requirements: AR markers are used in the teaching phase since human beings can actively control the process. Point cloud matching and geometric constraints are used in the robot execution phase to avoid unexpected noises. Experiments are performed to examine the precision and correctness of the approaches. The study is practical: The developed approaches are integrated with graph model-based motion planning, implemented on an industrial robots and applicable to real-world scenarios.