In target speaker extraction, many studies rely on the speaker embedding which is obtained from an enrollment of the target speaker and employed as the guidance. However, solely using speaker embedding may not fully utilize the contextual information contained in the enrollment. In this paper, we directly exploit this contextual information in the time-frequency (T-F) domain. Specifically, the T-F representations of the enrollment and the mixed signal are interacted to compute the weighting matrices through an attention mechanism. These weighting matrices reflect the similarity among different frames of the T-F representations and are further employed to obtain the consistent T-F representations of the enrollment. These consistent representations are served as the guidance, allowing for better exploitation of the contextual information. Furthermore, the proposed method achieves the state-of-the-art performance on the benchmark dataset and shows its effectiveness in the complex scenarios.