instance.In this paper, we demonstrate the feasibility of the so called direct hardware mapping (DHM) and discuss several tactics we explore to make DHM usable in practice. As a proof of concept, we introduce the HADDOC2 open source tool, that automatically transforms a CNN description into a synthesizable hardware description with platform-independent direct hardware mapping.
Deep Convolutional Neural Networks (CNNs) are the state-of-the-art in image classification. Since CNN feed forward propagation involves highly regular parallel computation, it benefits from a significant speed-up when running on fine grain parallel programmable logic devices. As a consequence, several studies have proposed FPGA-based accelerators for CNNs. However, because of the large computationalpower required by CNNs, none of the previous studies has proposed a direct mapping of the CNN onto the physical resources of an FPGA, allocating each processing actor to its own hardware